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Abstract

We propose an efficient and accurate approach to piezoelectric bimorph based on a refined expansion of the elastic
displacement and electric potential. The field approximation of the through-the-thickness variation accounts for a shear
correction and a layerwise modelling for the electric potential. A particular attention is devoted to the boundary
conditions on the bottom and top faces of the plate as well as to the interface continuity conditions for the electro-
mechanical variables. The continuity condition on the electric potential imposes some restrictions on the approximation
of the electric potential. Moreover, the continuity condition on the normal component of the electric induction at the
bimorph interface is ensured by a Lagrange multiplier. The equations of the piezoelectric bimorph are obtained by using
variational formulation involving the appropriate boundary and continuity conditions.

A selection of numerical illustrations is presented for the series and parallel piezoelectric bimorphs simply supported
under cylindrical bending conditions. Two types of electromechanical load are considered (i) a surface density of force
applied on the top face and (ii) an electric potential applied on the bottom and top faces of the bimorph. The results
thus obtained are compared to those provided by finite element computations performed for the full 3D model and by a
simplified model without shear effect. At last, the problem of piezoelectric bimorph vibration is also examined for both
closed and open circuit conditions. Excellent predictions with low error estimates of the local (profile) and global
responses as well as resonant frequencies are observed. The comparisons assess of the effectiveness of the present
approach to piezoelectric bimorph.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of novel materials made of composite structures equipped with piezoelectric components
remains an active research area and success of adaptive devices has attracted the attention of industry and
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engineering researchers due to numerous technological applications (see for review Rao and Sunar, 1994;
Tani et al., 1998; Chee et al., 1998). The analysis of piezoelectric composites such as laminated plates re-
quires modelling with efficiently accurate approximation of both sensor and actuator functions. One of the
most popular advantage of piezoelectric material is when an electric potential is applied to a piezoelectric
component its dimensions change. Conversely, when it is stressed mechanically by a force, it generates
electric charges on its faces. If the electrodes are not short-circuited an electric current associated with the
electric charges can be measured. The most popular simple piezoelectric actuator consists usually of a slab
of piezoelectric ceramics when an electric field is placed across its thickness, the layer expands or contracts
mainly in its length direction. However, the motion of a single layer is extremely small (the order of fewer
micrometer for a voltage of 100 V). To overcome this limitation, piezoelectric composites using flexural—
extensional deformation becomes necessary. One of the most practical multilayer piezoelectric composites
commonly used is the piezoelectric bimorph or bender. The application of an electric field across the two
layers of the bender produces one layer to expand while the other one contracts. The global result is thus a
flexural deformation much greater than the length or thickness deformation of the individual layers (of the
order of few hundreds of micrometers for 100 V). More sophisticated multiplayer piezoelectric composites
could be considered to improve the motion amplification and performance of the adaptive structure (Steel
et al., 1978). Wide range of interesting technological applications have been proposed, going from aero-
nautical and automotive structures (shape control of space antennas, active or passive control of vibrations,
etc.) to many other engineering devices (see Lee, 1979; Muralt et al., 1986; Peters and Blackford, 1989;
Chonan et al., 1996; Yoon and Washington, 1998; for quoted examples).

The main objective of the present study attempts to present a consistent and efficient approach to
piezoelectric bimorph structure. Although a number of consistent and efficient approaches to piezoelectric
bimorph have been proposed by Spineau et al. (1998), He et al. (2000) and Lim et al. (2001), most of these
models are mostly based on the kinematic assumption of Love—Kirchhoff theory of thin elastic plates or
Bernoulli-Euler theory of beams as proposed by Smits et al. (1991a), Smits and Cooney (1991b) and
Crawley and Anderson (1990). These models are able to accurately predict the global responses of the
bimorph, especially the deflection, but they cannot provide excellent estimates of the local responses such as
the through-the-thickness variations of the displacements, electric potential and stresses. The classification
of the various approaches is mainly based on the kinematic assumption for approximating the through-the-
thickness variation of the electromechanical state variables and representation method of the piezoelectric
layers (see Saravanos and Heyliger, 1999; for a review). Here, we propose an alternative approach based on
a combination of mixed through-the-thickness approximation including shear correction for the elastic
displacement. More precisely, the present modelling combines an equivalent single-layer representation for
the mechanical displacement with a layerwise-type approximation for the electric potential. Moreover, the
modelling, presented hereafter, accounts for the conservation law of electric charge (Gauss equation). We
do not therefore consider any hypothesis on the form of the electric induction.

The plate equations are derived from a variational formulation extended to piezoelectric media. A
particular attention is devoded to the continuity conditions at the layer interface and to the boundary
conditions on the top and bottom faces of the plate. The present study is a continuation of work mostly
dedicated to single layer plate model where all the requisite ingredients have been discussed in detail by
Fernandes and Pouget (2001). Extension of the later approach to multilayer plate has been proposed
leading to particularly interesting comparisons to finite element computation for different kinds of elec-
tromechanical loads has been proposed by Fernandes and Pouget (2002). In order to assess the capability
and performance of the model, a number of benchmark tests are given for a piezoelectric bimorph subject
to (i) a force density normal to the upper face and (ii) an electric potential applied to the bottom and top
faces of the plate and eventually at the layer interface. Some comparisons to numerical results provided by
finite element method performed on the fully 3D model are considered. The comparisons lead to very
excellent predictions of both global (displacement, electric charge) and local (thickness variations of the
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electromechanical state) responses of the piezoelectric bimorph. The vibration of the piezoelectric structure
is then examined for the shorted and open circuit providing also very accurate results.

The outline of the study is organized as follows: the piezoelectricity formulation is briefly stated in
Section 2. The approximation of the electromechanical fields is given in Section 3, the approach is then
specialized according to the bimorph arrangement. A particular emphasis is placed, in Section 4, on the
boundary and interface conditions for the series and parallel configurations. In Section 5, the bimorph
equations are then derived from the variational formulation along with the associated mechanical and
electric boundary conditions around the plate contour. The study of the piezoelectric bimorph under
cylindrical bending is examined in Section 6 and numerical results and comparisons to finite element
computations are also given. Section 7 is devoted to vibration modes of the piezoelectric bimorph and
comparisons to finite element method are also presented. At last the closing remarks and discussion of the
most relevant results are evoked in Section 8.

2. Piezoelectricity formulation: pre-requisites

In this section, we summarize the ingredients concerning piezoelectricity needed for the present plate
approach. The formulation is based on Hamilton’s principle extended to piezoelectricity (see Tiersten, 1969).
The variational principle can be stated as

%) b
5/ /gdvdt—l—/ dwdt =0, (1)
H Q 5]

where & = K — H(Sy;, E;) is the density of the Lagrangian functional with K, the kinetic energy K = Lpui;;
and H, the electric enthalpy density function. In addition, p is the mass density, u; the elastic displacement
(the dot means derivative with respect to time). The enthalpy density function for piezoelectricity takes on
the form

H(Sl/,El) = %U”Slj — %DiE” (2)

where S;; = 1(u;; + u;;) is the strain tensor component, E; is the electric field vector, ¢;; are the components
of the stress tensor and D, represents the electric displacement or induction vector. The last term in Eq. (1) is
the virtual work of the prescribed mechanical and electric quantities on the domain boundary 0Q given by

6W:/ T,-Suids—&—/ 08¢ ds. (3)
0Q 0Q

In Eq. (3), T is the surface traction and Q is the surface density of electric charge applied to the domain
boundary 0Q. The scalar variable ¢ is the electric potential. In addition, in the framework of the quasi-
electrostatic approximation, the electric field derives from an electric potential E; = —¢ ;. On using a clas-
sical argument of integration by part and assuming arbitrary variations du; and 8¢ throughout the domain
Q subject to the conditions 6¢(#;) = 8¢ (t,) = 0 and du;(¢;) = du;(t,) = 0. The field equations (in absence of
body force) are

01// = pil,-, Di,i = 0 (4)

The above field equations are completed by boundary conditions for the prescribed surface traction and
surface density of electric charge or electric potential, namely o;;n; = T; on 0€,, u; = u; on 0Q, and Din; = O
on 0Qp, ¢ = ¢ on 00, (02 =0Q, UdRQ, and 0Q = 0Q, U0, with 0Q2, N0Q, = 0Q2p N 0Ly = ¢). For
linear piezoelectricity the enthalpy density function usually has the form (see Ikeda, 1996)

H(Sy, E;) = %CE SijSpq — €ipgEiSpg — %‘33EtE/ (5)

ijpq



4334 A. Fernandes, J. Pouget | International Journal of Solids and Structures 40 (2003 ) 4331-4352

It has been assumed isothermal process and thermomechanical coupling and pyroelectric effects have
been neglected. The constitutive equations for ¢ and D derive from the enthalpy functional as follows

OH
O',-j = aS = CgpqSW — ek,-jEk,
ij (6)
oH S
D; =~ OE, CipgSpg + E5E;-

In Eq. (6), CF is the fourth-order tensor of elasticity coefficients measured at a constant electric field, e is
the third-order tensor of piezoelectric coefficients and &5 is the second-order tensor of the dielectric coeffi-
cients measured at a constant strain. According to the material symmetry the number of independent
constants can be reduced. In the case of isotropically transverse symmetry we have five elastic coefficients,
three piezoelectric constants and two dielectric constants which are independent (examples of piezoelectric
materials are given in Ikeda (1996) and Cady (1964)).

3. Field approximation

Along with the accepted kinematic assumptions for the displacement field in most plate theories (e.g.
Reddy, 1984), we consider an expansion of the elastic displacement as a series function of the thickness
coordinate. The level of truncation of the expansion leads to the order of the plate theory (Bisegna and
Caruso, 2001). In the framework of the present approach, the elastic displacement and electric potential are
assumed to be of the form

uot(xa%Za t) = Ua(x,y7 t) _Zwyd(xv)@ t) —|—f(z)ya(x,y7 t)? PAS {172}7
“3(%)’,2, t) = W(x}yv t)v , , . (7)
qb([)(xvyaza t) = ¢(()')(x7ya t) +Z/¢§ )(XJG t) +P((Z(f)¢g)(x7ya t) +g(z)¢g)(x7yv t)v

with £ = 1 for the lower layer and ¢ = 2 for the upper layer in the case of bimorph structure (the notations
of the geometry and coordinates are given in Fig. 1). We have set z; =z + //4 and z, = z — h/4 the local
thickness coordinates attached to the lower and upper layers, respectively. It is worthwhile commenting the
expressions (7): (i) In Eq. (7), U, holds for the middle plane displacement component, w is the deflection and
y, represents the shear function. All the functions are defined at the middle plane coordinate (x,y,0). (ii) If
f(z) = 0, we recover the classical Kirchhoff-Love thin plate theory (Love, 1944), if f(z) = z we obtain the
Mindlin—Reissner model or the first-order theory (Reissner, 1975). The expansion of f(z) at higher-order
leads to a refined model as developed by Reddy (1984). (iii) In the present modelling, we propose the
following functions

42= /2

4 0
Zl
= o) X

L= 2

Fig. 1. Piezoelectric bimorph: coordinates and geometry.
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{Pl(z) =z(z+h/2), Py(z) =z(z—h/2),

s =Lsn(). =L oo ).
where £ is the plate thickness which is supposed to be uniform. The case of purely elastic plates has been
extensively studied by Touratier (1991) with extension to elastic shells (Touratier, 1992). (iv) For the electric
potential, the first two terms are associated with the applied electric potential on the plate faces since
Pi(=h/2) =0, P,(h/2) = 0 and g(£+//2) = 0. The third terms is referred as to the induced electric potential
by piezoelectric coupling in the upper or lower layer. The term factor of g(z) is associated with the shearing
effect.

®)

4. Boundary and continuity conditions

Two piezoelectric bimorph arrangements are commonly considered and manufactured. The first kind of
bimorph shown in Fig. 2(a) is often called series bimorph or antiparallel bimorph. In this situation both
piezoelectric layers are made of identical materials and have the same thickness 0.5k, however, the piezo-
active axes are in opposite direction. The electric potential is applied to the bottom and top faces through
thin metallic electrodes. The second arrangement is known as parallel piezoelectric bimorph and it has an
intermediate electrode at the layer interface as depicted in Fig. 2(b). In this case the piezo-active axes are in
the same direction. For both arrangements the electric field along the thickness coordinate across each layer
is of the order of 2V /h.

4.1. Series or antiparallel piezoelectric bimorph

Now, we must consider the boundary and continuity conditions along with the symmetry properties of
the bimorph. The boundary conditions on the electric potential on the plate faces can be written as

h
oy, —h/2) = ¢y = 381" ==,
h
Oy, +h/2) = 97 + 307 = V.
The continuity condition at the bimorph interface z = 0 can be expressed as

{‘1)(11)(%%0) :¢(22)(x7y,0), (10)
D (x,»,0) = DY (x,,0).

For the electric potential we use the expansion (7)3

h h
RSICR VU PR m
’ p(x) ’ p(x)
+h,2HHHHHTHHHHH y +h,2HHHHHTHHHHH +V
o+

O V=0

—h2 | T oov —h2 ! "
) T+V

(a) (b)

Fig. 2. Piezoelectric bimorph: (a) series arrangement and (b) parallel arrangement.
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The continuity condition on the normal electric induction component can be written by using the
constitutive equation (6). Moreover, piezoelectric layers are made of identical transversaly isotropic material
. . . . S . . . oyl 0

but having their piezoelectric axis in opposite direction along the z-axis. Then we have D;’ =
e;é/{Saﬁ +& >¢f§) with ¢ € {1,2}. The symmetry conditions leads to e;ﬁ) = —eéi}ﬁ = ey, (o, p € {1,2}) and

83(3 ) = 83(3 ) = &53. Where the effective piezoelectric constant e3,; and dielectric constants ¢, are derived from

the hypothesis on the normal shear stress o33 (033 negligible, see Appendix A for the definitions of the
effective material constants). Finally, the continuity condition on D; takes on the form

h h
« l0 . 1 1 « l0 . 2 2
_emsgﬁ) — &3 (¢l )~ E(’bg )> = e3xﬂS£ﬁ) — &3 (¢l Lt E(’bg )>,

or

203,51 = a5 (61— 0) sy (8 + ). (12)

where SS/);) = Uy,,p. The solution o ==\ =12, ¢V = ¢\P = (2/h)V and ¢\ = ¢\ satisfies the con-
ditions given by Egs. (9) and (11). The condition (12) reduces to (with indice summation on o and f3)

4 e,
Ay =V + ¢ — . —:fsg —0. (13)
33

The above equation tells us that if there is no global elongational motion of the bimorph, therefore
¢(21) + qbgz) = 0, which occurs for a pure flexural motion. At last, the form of the electric potential is

#0 =222+ PP + 51 (14)

with ¢ € {1,2}. With the V1ew of solvmg the piezoelectric bimorph problem we must find the nine un-
known functions {U,,w, ya,qﬁz ,d)z , 5,0} with o € {1,2} and 0 being the Lagrange multiplier. The
pr([c;blem can be now stated as follows, find the nine unknown functions under the constraint (13) relating
¢, to U,.

4.2. Parallel piezoelectric bimorph

For this arrangement, a zero voltage (V' = 0) is applied to the intermediate electrode, while the voltage V'
is applied to the bottom and top faces of the plate. In such a situation, the components of the electric field
along the thickness direction E3 across the lower and upper layers are in opposite directions. Accordingly,
regarding to the piezoelectric couplings, this case is, in fact, similar to the antiparallel situation. The
boundary and interface conditions on the electric potential are the following

D x,y, h/2) —*qﬁ

b 70 <1 - ’

(xy )= h¢ ‘l‘h(bs (15)
(x,y70) (2)_Z¢ +;¢3 = 7

Oy, +h/2) = o5 + 7 <t> =

The continuity condition at the bimorph interface on the electric potential is fulﬁlled On usmg symmetry
argument on the electric potential, it can be shown 4)(()1) = (;S(()z) = ¢y, d)(ll) = (j) = ¢, and qS
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¢5. It is worthwhile noting, in this situation, there is no continuity condition on the normal component of
the electric induction. The electric potential for both layers takes on the form

1 z
a1 4% (1 5
oV = ; (1 4];)V+P1(z)<f>z2 +81(2) s, (16)
o7 =3 (1+45)V + PE# + &0
where we have set
R h T z . h T z

Now, the problem amount to finding the eight unknown functions {U,, w,y,, (;’)él), (;’>(22>, o5} with o € {1,2}.
However, in the present situation there is no condition on the electric induction as in the series bimorph.

Remark. Surface density of electric charge can be applied on the top and bottom faces of the bimorph. In
this situation, the boundary condition on the electric induction is reduced to Ds(x, y, £h/2) = O(x,y), where
0 is the prescribed electric charge per unit of area (see for details Fernandes and Pouget, 2001). The
continuity of the electric potential and normal component of the electric induction must be satisfied,
thereby, there is no difference between the series and parallel arrangements except if the intermediate
electrode is at the ground for the parallel bimorph (no continuity condition on Djs).

5. Equations of motion for the bimorph structure

The variational formulation stated in Section 2 is then used to derive the equations of motion of the two-
dimensional model from the full three-dimensional formulation of piezoelectricity. The expansion of the
elastic displacement and electric potential equations (7) and (14) or (16) according to the arrangement are
substituted into the formulation (1) and the dependency of the field on the thickness coordinate z is rubbed
out by integrating over the plate thickness. The variational formulation must be written under the con-
straint (13) involving the introduction of a Lagrange multipliers 6. At last the Hamiltonian principle can be
cast into the form (see for details Fernandes and Pouget, 2002)

[5)
/ (8K — 8U + 8W; + 8W; + 84)dt = 0., (17)

t
In Eq. (17) the first term represents the variation of the kinetic energy given by
0K = — / (r'8U, + 1" 8w+ I 8y,)ds — / T'"n,dwde. (18)
z %

The different acceleration quantities are defined by

E(M) - IOUou

W) — IOW —+ [1 '5).&’& - IZWA‘;(M
Fg") = [3))“ —Lw,,

F(W) = 111.4'),‘1 - 12’5).@7

I
" (19)

where the different inertial momenta are given by

+h/2

(I, I, 5) = / p(1,2%, £2(2),2f (2)) dz. (20)

—h/2
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In Eq. (18), n is the outwards unit normal to the plate contour %. The second term in Eq. (17) is the
variation of the internal force work

8U = / {Np(BUL) y = Map(Sw) 5 + Mog(80,)  + 0,87, + DDV 8¢L1) + DI 3 + DY 69y,
z ' ' ’ ' ' - '
Vogl) + DI 5g + DY 5, fs, (21)

where the stress and electric charge resultants are computed using the three dimensional stresses ¢;; and
electric displacement D;

R +h/2
<Nzx[f7Mm/f7M0’-ﬁ> :/ (1,2,1(2))0up dz, (22)
—h/2
+h)2
0,= / z)0,3dz, (23)
w2
40
2)(¢
(D20, D) = | © (PO, KD )dz, (24)

with P'(z) = dP(z)/dz, f'(z) = df(z)/dz and g'(z) = dg(z)/dz.

Remark. There is no fundamental difference between the equation of motion for the series and parallel
bimorph since the independent electric potential variation {6(152( ,0¢3} (see Egs. (14) and (16)) are the same.
Nevertheless, the difference between both a?prommatlons for the electric potential appears in the definition
of the electric charge resultants D) and D ,in fact g,(z) must be replaced by g(z) in Egs. (24) and (25). The
corresponding constitutive equations are then modlﬁed

The third and fourth terms in the variational formulation (17) hold for the variational works of applied
forces and electric charges on the faces and lateral contour of the plate. This variational work is the sum of
works of prescribed loads on the top and bottom faces of the plate and those on the lateral boundary of the
plate, namely

3 = / (f«SUa — pdw +1i, 8y, + g5 8¢5 + 4 3¢ + ¢ 5¢3)ds’ (26)
z

SW, = / [F U, + Tow + C, 8y, — My(8w) , + 05 8¢ + 05 8¢ + 0; 5¢3] 40 =>"7,8w, (27)
4 p

In Eq. (26), f, and p are surface densities of force, m, is a surface moment density. The generalized
surface density of electric charges ¢\’ and g3 are zero due to g,(£h/2) = 0, and P,(—h/2) = Py(+h/2) = 0
(Fernandes and Pouget, 2002).

In Eq. (27), F, and T are densities of force per unit of length, M, and C, are lineic moment densities and
Z, are transverse forces applied at angular points of the boundary contour % of the plate. In Eq. (27), (dw),,
is the derivative of the variation dw with respect to the normal direction to the boundary contour. The
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electric charges per unit of length Q! are supposed to be zero (the lateral boundary of the plate is not
coated with metallic electrode).

Finally the last term in Eq. (17) is the virtual work of force due to the Lagrangian multiplier associated
with the constraint (13) and it reads as (Fernandes and Pouget, 2002)

54 = / 5(04,)dS. (28)

On accounting for Eq. (13) the virtual work equation (28) can be written as

h
3 = / {Ag 80+ 0 { —2€3,,8U, 5+ 58’;3 (5@2) + 6¢§1>)] }dS, (29)
z

Now, by employmg integration by part if needed and collecting all the factor of the arbitrary variations
{8U,, éw, dy,, 8(;’)2 , 05,00} with £ € {1,2} to be zero at #; and #, we arrive at the field equations for the
piezoelectric bimorph

/Vocﬁ.ﬁ +foc = F:l)v
Mac/fzxﬁ *P* F(W)

Ma/;[{—Q +m :FE», (30)
D0 - 10 L,
D£c3o>c - Dga) =0,

where we have introduced the modified in-plane force resultant and electric induction resultant
N ap = Nag — 2€3,40,

h
FP = DPY 42 0.

(31)

At last the variation of the Lagrange multiplier 6 gives rise to the continuity condition (13) (i.e. 49 = 0).
The associated boundary conditions along the plate contour % are also deduced from the variational
principle equation (17)

F, = N ypng or U, given,

T = (v,Myng) +nMys+T"n, orw given,

M; = n,Mpng or w, given, (32)
C, = Mpny or v, given,

DPUn, =0 or ¢ given,

DP¥n, = or ¢, given,

where s is the curvilinear coordinate along the plate contour €.

Moreover, we have [t,M,zn;] 4, = Zp at the angular points 4, of the contour where 7 is the tangent vector
to the contour 4.

It is worthwhile noting that the equations of motion thus obtained is a particular case of more complete
equations for piezoelectric plate made of arbitrary layers presented by the authors Fernandes and Pouget
(2002). The first two equations (30) are similar to those of the Love—Kirchhoff theory of elastic thin plates,
the third equation governs the shearing effects. The last two equations are deduced from the conservation
law of electric charges for the generalized electric induction resultants often absent in most theories. It
should be noticed that the Lagrange multiplier 0 has the dimension of an electric field. It plays the role of an
electric field to enforce the continuity of the normal electric induction component at the interface z = 0. In
the case of the parallel arrangement there is no Lagrange multiplier and we set 6 = 0 in Eq. (31).
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The constitutive equations for the stress and electric charge resultants can be written down as function of
the plate deformation and generalized electric potentials {U,, w,y,, qS(f), ¢5} and Lagrange multiplier 0 by
using Egs. (22)—(25). We substitute the results thus obtained into the plate equations (30), we arrive at a set
of linear partial derivative equations subject to the boundary conditions of the particular problem being
traited.

6. Numerical solutions for piezoelectric bimorph in cylindrical bending

We consider a piezoelectric bimorph (see Fig. 2) undergoing a surface density of normal force and
electric potential applied to the top and bottom faces of the plate. We assume that the shear traction is
zero (i.e. f, = 0) and there is no surface density of moment (i, = 0). The simple support conditions for a
rectangular plate of length L are simulated by a,(0,z) = 011(L,z) =0, 613(0,z) = 013(L,z) =0 and
u3(0,z) = u3(L,z) = 0. In this case the electromechanical variables do not depend on the y variable,
accordingly the displacement u, plays any role in the problem and we set U, = 0 and 7, = 0.

The electromechanical load functions are written as Fourier series as follows:

(P(), V(x) =Y (S, V) sin(4x), (33)
n=1
with 4, = nn/L, S, = 4Sy/nn and V, =4V, /nn if n odd and S, = ¥, = 0 if n even. Then, the loads thus
defined represent uniform applied force density per unit of area Sy and electric potential };. Sketches of the
bimorph setting is given in Fig. 2 for both arrangements. A solution to the set of linear equations for the
unknown functions which satisfies the boundary conditions for the cylindrical bending of a plate simply
supported can be searched for as Fourier series

(U, 10) = D (U ) costim), (34)
(00,000, 50) = 3 (W 0L, 05, s ), 33)

and the same kind of series is considered for the Lagrangian multiplier
0(x) = O, sin(4,x). (36)
n=1

The Fourier coefficients in Egs. (34)—(36) are determined by substituting the solution into the equations of
motion and solving simultaneously a set of linear algebraic equations for each n where the right-hand side
contains the electromechanical loads given by Eq. (33). The set of linear algebraic equations can be put in
matrix form

A,X, =B,, (37)

where A, is 7 x 7 matrix, the vector X, = {U,, W,, T, 45(;,),, (I><f,>,, &, ,,0,} contains the Fourier coefficients
and the vector B, defined the applied fields as functions of the Fourier factors S, and ¥,. The matrix A, and
vector B, depend on 4,, the thickness # and material constants of the bimorph. The detailed components of
the matrix A, and B, are given in Appendix B. For the parallel bimorph, no Lagrange multiplier is con-
sidered and A is a matrix of 6 x 6 order (see Appendix B).

The geometry of the plate is L = 25 mm and ¢ = 12.5 mm and different slenderness ratios are considered
L/h=35, 10 and 50. Two kinds of electromechanical loads are considered corresponding to (i) sensor
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Sfunction with a force density per unit area applied to the upper face of the bimorph and (i) actuator function
with an electric potential applied to the top and bottom faces of the plate. However, the numerical results
for state variables are given in dimensionless units as follows.

(i) for a surface density of force Sy # 0 (Sy = 1000 N/m?, ¥, = 0) we set
Ch 1
(U, W, ) =—L(u,us3, ¢/Eo), (T, Zx) = = (04, EoDy), (38)
hSo So

(i1) for an applied electric potential ¥, # 0 (5 = 50 V and S, = 0) we set

hE,

Ey
(U W,®) = %(ulau% /EO) ( U,@k) CEV

(04, EoDy), (39)

for numerical convenience we take Ey = 10'° V/m. The number of terms in the series Eqgs. (33)—(36) are
adjusted in order to satisfy the series convergence. The finite element computations for comparison are
carried out with ABAQUS code by considering plane strain elements of 8-node biquadratic type and 800
elements are used. The results are also compared to those provided by a simplified model based on kine-
matic assumptions of Love—Kirchhoff’s theory, it means that the shear correction is neglected. The bimorph
is made of two identical layers of PZT-4 piezoelectric ceramics of which the material constants are given in
Table 1 (extracted from Ikeda, 1996).

6.1. Series bimorph configuration

6.1.1. Sensor function

For this configuration the electric potential is set to zero and a surface density of normal force is applied
to the top face of the bimorph. The numerical results are collected in Fig. 3 in dimensionless unit for the
profiles with L/h = 10 and some estimating errors between the different approaches are given in Table 2 for
three different aspect ratios. The elongation displacement U at x = 0 is plotted in Fig. 3(a), the profile is
almost linear. The flexural displacement w at the middle of the plate (x = L/2) is given in Fig. 3(b), the
straight line corresponds to the present plate approach. In Fig. 3(c) we have the induced electric potential
showing an asymmetric profile. The shear stress o;; computed at x = L/4 is depicted in Fig. 3(d). In this
situation, it is clear that there is no global elongational motion of the plate, so that U = 0, as consequence

Dy d>§2> = 0 (see Eq. (13)). In addition the continuity condition for Ds is then satisfied. This explains the
asymmetric form of the electric potential profile. Comparisons to the finite element method and to the
simplified model are presented in Table 2 for three typical slenderness ratios (L/h = 5, 10 and 50). The most
interesting result is the discrepancy between the maximum values of the deflection at the plate center for the
approaches. Indeed, the estimating errors for the deflection for the present model is about 0.007% for
L/h =50,0.07% for L/h = 10 up to 2.5% for L/h = 5 (thick plate) while the error overtakes 13.8% for the
simplified model. It is worthwhile noting the continuity of the shear stress o3 through the interface between
both piezoelectric layers while it is identically zero for the simplified model. The discrepancy for the
maximum shear stress is 1.7% for L/h = 50, 2.9% for L/h = 10 and 5.67% for L/h = 5.

Table 1
Independent elastic, piezoelectric and dielectric constants of piezoelectric materials (transversally isotropic symmetry)

CE (GPa) CF, CcE CcE CE, ey (C/m?) s ers &, (nF/m) ¢,

PZT-4 139 71.8 115 74.3 25.6 =52 15.1 12.7 13.06 11.51
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Fig. 3. Force density applied on the top face of a piezoelectric series bimorph in closed circuit for L/h = 10. Plate model (full line), finite
element (small circles) and simplified plate model (dashed-line).

Table 2
Piezoelectric series bimorph, applied density force
L/h Approaches W (L/2,0) Error (%) & (L/2,—h/4)  Error (%) T3 (L/4,0) Error (%)
50 FEM —1.4286 x 10° 19.0 —-18.31
Present —1.4287 x 10° 0.007 18.986 0.007 —-18.625 1.7
LK —1.4268 x 10° 0.12 18.986 0.007 0.0 100.0
10 FEM -2360.0 0.7925 -3.62
Present —2358.36 0.07 0.775 2.15 -3.726 29
LK —2283.18 3.25 0.7574 443 0.0 100.0
5 FEM -165.7 0.2234 —-1.80
Present —161.468 2.55 0.2063 7.64 -1.86 5.67
LK —-142.74 13.85 0.188 15.7 0.0 100.0

6.1.2. Actuator function

In this situation, the piezoelectric bimorph suffers an electric potential applied to the top and bottom
faces of the plate (—V at z= —h/2 and +V at z = h/2, with p = 0). The profile or local responses of the
electromechanical variables are shown in Fig. 4. The longitudinal displacement u is plotted in Fig. 4(a), it
displays very clearly a linear variation through the plate thickness with u(z = 0) = 0. This shows that the
bimorph undergoes a bending motion. The deflection at the plate center and electric potential variations are
presented in Fig. 4(b) and (c), respectively. An interesting result is the normal component of the electric
induction Z; shown in Fig. 4(d) which is almost constant through the plate thickness. The errors in esti-
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Fig. 4. Electric potential applied to a piezoelectric series bimorph for L/ = 10.
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mating values between the present approach, the simplified model and finite element computation are given
in Table 3 for three different aspects ratios. It should be noticed that the discrepancy of the deflection at the
plate center does not exceed 2.3% for L/h = 5 (thick plate) in comparison to 4.8% for the simplified model
(no shear correction). Moreover, for L/h > 10 the error is smaller than 0.5% which is excellent. With
an applied electric potential of the order of 100 V, the bender produces a deflection of the order of 30 um
for L/h = 50. Table 3 also exhibits the errors in estimating the electric charge at the upper plate face
and the jump of the longitudinal stress 7}, at the interface for the three different slenderness ratios. The
above results show the efficiency of the present refined approach to predict correctly both local state

Table 3

Electric potential applied to a piezoelectric series bimorph

L/h Approaches W (L/2,0) Error (%) [71] (L/2,0)  Error (%) Z5 (L/2,h/2)  Error (%)
50 FEM 2945.0 2.431 -21.94
Present 2943.3 0.02 2422 0.36 -21.97 0.15
LK 2945.3 0.05 2413 0.74 -21.89 0.22
10 FEM 116.6 243 -21.94
Present 116.0 0.5 2.425 0.26 -21.995 0.25
LK 118.0 1.2 2412 0.78 -21.88 0.27
5 FEM 28.296 2.43 -21.94
Present 27.653 23 2.425 0.26 -21.99 0.25
LK 29.651 4.8 2412 0.78 -21.88 0.27
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(through-the-thickness variation) and global responses for the sensor and actuator functions of the
piezoelectric bimorph.

6.2. Parallel bimorph configuration

6.2.1. Sensor function

As in the case of the series arrangement, the electric potential is zero and a surface density of normal
force is applied to the top face of the plate. The variation through the plate thickness for the deflection is
given in Fig. 5(a) for the aspect ratio L/h = 10 at the plate center. The results of the present approach
corresponds to the straight line while the simplified model is given by the dash-line and the small circle is for
the finite element computation. The electric potential produced by the plate deformation through the
piezoelectric coupling is shown in Fig. 5(b). The curve is symmetrical with respect to the plate mid-plane
and it is piecewise parabolic curves. This demonstrates the usefulness of the quadratic part in the expansion
of the electric potential (see Eq. (7) or (16)). The shear stress a3 at x = L/4 is plotted in Fig. 5(c), in the
present configuration the continuity condition of the shear stress is fulfilled. We notice the excellent
agreement with the finite element result while it is almost zero for the simplified model. In Fig. 5(d), we have
the normal component of the electric induction exhibiting a jump at the layer interface at the plate center.
The jump in the electric induction provides the surface electric charge on the intermediate electrode. Table 4
gives some errors in estimating the global response of the bimorph structure for three different slenderness
ratios (L/h = 5, 10 and 50). It is worthwhile noting that the error in estimating the deflection at the plate
center is small (<1.5%) for the present model even for thick plates whereas it overtakes 10% for the sim-
plified approach. The same remark holds for the induced electric potential. In the case of a bimorph
structure with L/A = 50, the maximum electric potential induced within piezoelectric layers is about 0.7 V.
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Fig. 5. Force density applied on the top face of a piezoelectric parallel bimorph in closed circuit for L/h = 10.
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Table 4
Piezoelectric parallel bimorph, applied density force
L/h Approaches W (L/2,0) Error (%) & (L/2,—h/4) Error (%) T3 (L/4,0) Error (%)
50 FEM -1.4285 x 10¢ -18.977 -17.94
Present —1.4287 x 10° 0.016 —-18.986 0.047 —-18.62 3.8
LK -1.4268 x 10° 0.116 —18.968 0.049 0.0 100.0
10 FEM -2349.4 —-0.766 —-3.587
Present -2358.4 0.38 —-0.775 1.15 -3.724 3.8
LK —2283.2 2.82 —-0.757 1.21 0.0 100.0
5 FEM -159.21 —-0.197 -1.793
Present —-161.47 1.4 —-0.206 4.45 —-1.861 3.8
LK —-142.74 10.3 —-0.188 23.7 0.0 100.0

In addition, the electric charge produced at the layer interface is Qi = [Z3],_ X L x £ and it is of the order
of 1 C (L x £ is the surface of the intermediate metallic electrode).

6.2.2. Actuator function

In this situation the piezoelectric bimorph is subject to an electric potential applied to the bottom and
top faces of the plate (V at z = £4/2) and the intermediate electrode is set to zero voltage. The through-the-
thickness variation of the electromechanical quantities are collected together in Fig. 6 for L/h = 10. The
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Fig. 6. Electric potential applied to a piezoelectric parallel bimorph for L/h = 10.
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Table 5
Electric potential applied to a piezoelectric parallel bimorph
L/h Approaches W (L/2,0) Error (%) [Tu] (L/2,0)  Error (%) [25] (L/2,0)  Error (%)
50 FEM 2943.9 4.89926 44.222
Present 2943.3 0.02 4.89817 0.02 44213 0.02
LK 2945.3 0.05 4.89645 0.06 44.198 0.054
10 FEM 115.5 4.8614 43.88
Present 116.0 1.27 4.8974 0.74 44.195 0.72
LK 118.0 3.0 4.8007 1.25 43.343 1.22
5 FEM 26.197 4.8413 43.879
Present 27.654 5.56 4.9251 1.31 44.436 1.27
LK 29.651 13.2 4.7853 1.56 43.205 1.53

longitudinal or axial displacement is given in Fig. 6(a), it has almost linear variation. The resulting
deflection at the plate center is shown in Fig. 6(b). The full straight line corresponds to the present model
while the dash-line curve is for the simplified model (no shear correction). It is noticed that the deflection
for the present model is closer to the finite element result than the simplified model is. In Fig. 6(c), we have
the axial stress with a discontinuity at the layer interface. Nevertheless, the most interesting result is the
profile of the normal component of the electric induction Ds depicted in Fig. 6(d). It is observed that the
electric induction undergoes a jump at the bimorph interface, this means that a surface density of electric
charge is then produced on the intermediate electrode given by [Ds],_, = O. Some estimates are given in
Table 5 for three slenderness ratios (L/h = 5, 10 and 50) and comparisons with finite element computation
and simplified model are also considered. Table 5 tells us that the present model provides quite good results,
especially the discrepancy in the deflection at the plate center is less than 6%, for the jump of the axial stress
and that of the electric induction at the layer interface, it is less than 1.5%. Going back to the physical
dimensions, a deflection of about 30 um is obtained when a voltage of 100 V is applied for L/h = 50. The
deflection thus produced is of the same order than that of the series arrangement (see Section 6.1.2). The
jump of the axial stress at z =0 is of the order of 13.6 MPa. The electric charge measured on the inter-
mediate metallic electrode at z = 0 is about 40 C.

7. Vibration of piezoelectric bimorph

In this section, we consider dynamical processes for the piezoelectric bimorph based on the present
modelling. Then we propose the prediction of modal frequencies of the structure for both open circuit
(D3 = 0) and closed circuit (¢ = 0) conditions on the top and bottom faces of the bimorph, for the typical
aspect ratio L/h = 10. The knowledge of modal frequencies of such piezoelectric elements plays an in-
creasingly important role in the control process of vibrations as suggested by Anderson and Hagood (1990).
In particular, piezoelectric composites can be used as components of a passive damping device, thereby
avoiding complex control and feedback systems. Piezoelectric composites have the ability to convert kinetic
energy to electric energy during vibration process and vice versa. This enables the dissipation of electric
energy through a passive electric circuitry (i.e., shunt resistor). Works have been reported on passive control
of vibration through piezoelectric elements have been reported by Gaudenzi et al. (2000) and Vidoli and
Dell’Isola (2001). The sensitivity of the performance of such a passive control of vibrations to the optimal
tuning of the resonant electric circuitry is only obtained by an accurate prediction of the modal frequencies.
At this end, piezoelectric bimorph structures turn out to be an interesting element for vibration control.
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The solution to the piezoelectric plate equations (30) depends on time by introducing the factor e in the
Fourier series equations (33)-(36). Now, the Fourier coefficients of the solution are searched for by solving
an homogeneous set of linear equations taking on the form

A ()X, =0, (40)

instead of Eq. (37) in the static case. The subscript n represents the mode number. The matrix A, depends
on the normalized circular frequency Q = \/p/Cj hw. Non-zero solution to Eq. (40) yields

det(A,(Q)) =0, (41)

giving rise to eigenmodes of the bimorph structure for a given n. The right-hand side of Eq. (37) is zero,
since only free vibrations are considered. The conditions are those of the cylindrical bending. In the case of
the series configuration, the matrix A, is 7 x 7 order for the closed circuit condition whereas it is 10 x 10
order for the open-circuit setting. For the parallel arrangement, there is no Lagrange multiplier, the matrix
A, is 6 x 6 order for the closed-circuit condition and it is 9 x 9 order for the open-circuit case.

The frequencies of the resonant modes are presented in Tables 6 and 7 in comparison to the results
provided by finite element computations first and to the estimates given by the simplified version of the
model next. The results are given for the aspect ratios L/h = 10. However additional results can be found in
Fernandes (2000) for different slenderness ratios (L/2 =5 and 50). The numerical results show that the
piezoelectric bimorph has a series of natural bending and axial modes. Table 6 gives the first seven bending
vibration frequencies and the first axial frequency for the closed circuit condition. It is clear there is tiny
difference between the present model and the simplified one for the axial mode since the shear correction
does not play any role in this mode. Nevertheless, a rather good agreement is observed for the refined model

Table 6
Modal frequencies for the piezoelectric bimorph in closed circuit (L/h = 10)

Frequencies (Hz)—L/h = 10

Modes EF Present model Error (%) Simplified model Error (%)
Flex. n =1 15,747 15,769 0.1 16,030 1.8

Flex. n =2 59,370 59,677 0.5 63,338 6.3
Flex.n =3 122,994 124,291 1 139,721 12

Flex. n =4 199,046 202,511 1.7 241,909 17.7

Flex. n =35 282,019 289,352 2.5 366,039 229

Flex. n =16 368,241 381,771 35 508,113 27.5

Flex. n =7 455,253 478,014 4.8 664,352 31.5
Axial n =1 188,372 188,599 0.1 188,599 0.1

Table 7

Modal frequencies for the piezoelectric bimorph in open circuit (L/h = 10)

Frequencies (Hz)—L/h = 10

Modes EF Present model Error (%) Simplified model Error (%)
Flex. n =1 16,656 16,681 0.1 17,034 22
Flex. n =2 62,024 62,375 0.5 67,200 7.7
Flex. n=3 126,722 128,194 1 147,886 14.3
Flex. n =4 202,683 206,520 1.7 255,305 20.6
Flex.n =35 282,019 284,741 2.5 385,109 26.1
Flex. n =6 369,814 384,032 35 532,926 30.6
Flex. n =7 455,974 479,291 4.8 694,727 34.4

Axial n =1 188,478 188,618 0.1 188,599 0.06
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even for higher modes. On the other hand the simplified model based on the kinematic assumption of Love—
Kirchhoff elastic plate theory provides very non accurate values for the frequencies of the bending modes.
This demonstrates the beneficial role played by the shear function and the layerwise approximation for the
electric potential in the prediction of the frequencies of bending modes. The results and comparisons for
the slenderness ratio L/h = 10 are collected in Table 7 for the open circuit condition. Here, once again, the
present model is definitly better than the simplified model for the first seven bending modes. The effec-
tiveness of the present accurate modelling pleads in its favour for the use of piezoelectric bimorph in ac-
tively or passively controlling vibrations of elastic structures.

8. Concluding remarks

In the present study the piezoelectric bimorph structure has been investigated in details for its actuator
and sensor functions statically and dynamically (vibration). It is clear that in the light of the numerical
simulations and comparisons, the model has excellent performances. The approach is mainly based on the
principle of linear piezoelectricity in the framework of the quasi-electrostatic hypothesis. The model thus
presented is based on the combination of an equivalent single-layer approach for the mechanical dis-
placements with a layerwise type of modelling for the electric potential considered as an additional degree
of freedom. Two types of arrangement have been investigated, series and parallel bimorphs. For the latter
an intermediate metallic electrode at the layer interface allows one to accommodate an applied electric
potential. Moreover, the present approach includes the correction of the shear effect, which has a key role in
the accuracy of the results. The numerical simulations and comparisons assess of the quality of the pre-
diction of global and local responses (the through-the-thickness variation of the mechanical and electric
variables) for static and dynamic processes. Especially, the approach to piezoelectric bimorph provides very
accurate prediction of the bending and elongational vibration frequencies even for rather thick plate
(L/h = 5), whereas classical elastic thin plate theory based on Love-Kirchhoff theory gives less accurate
results with increasing discrepancy (more than 30% for L/h = 5). Smits et al. (1991a), Smits and Cooney
(1991b) have reported interesting results on the global responses of piezoelectric bimorph (maximum of
deflection, induced electric charges, etc.) based on Bernoulli-Euler beam theory. On using asymptotic
approach He et al. (2000) and Lim et al. (2001) have derived the equations of motion for piezoelectric
(parallel and antiparallel) bimorphs and they have obtained similar results for the through-the-thickness
variation of electromechanical fields.

The results here above obtained for piezoelectric bimorph will be completed by the investigations of
other configurations, for instance, the piezoelectric bimorph with one layer considered as sensor function
and the other layer used as actuator function seems to be an interesting practical problem. Constituent
equations for the bimorph describing the relationship between the electromechanical resultants (force,
moment, voltage) applied to the bimorph and global responses of the structure (deflection, rotation, electric
charge or current) is useful for engineering devices (e.g., micro-positionner, etc.). These problems will be
tackled in future works.

Appendix A. Effective material constants

All the algebraic manipulations have been done under the normal shear stress hypothesis for elastic thin
plates (o33 negligible in comparison to the other stress components). This leads to define effective modulus
of elasticity (using Voigt notation)

(A1)
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effective piezoelectric coefficients

% ei3cf3
e, =ej,— , (A.2)
! Ch
effective dielectric constants
s, €nép
€; = €; t CE (A.3)
33

respectively, with a,b € {1,...,6}, i,j € {1,2,3}.

Appendix B. Matrix A, for series and parallel bimorphs

The matrix and the right-hand side of the set of linear algebraic equations given in Eq. (37) takes on the
following form.
(a) For the series configuration

an 0 0 0 0 aig diy
an ayy Gy a0 0
asyy azy a0 0

An: (sym) Ayy 0 g Q47 |, (Bl)
dss  dse  dsy
aes 0
0

where the matrix components are defined by
. 1
A0, an =5

An ? * *

5| (%) arves
A\ . 2 (A, \(m . .
a,é——2<?>es’n a34——a35—ﬁ<?>(z—1)<e3’l+el‘s)’

2
11 /4
*/ n */ */
ay = _2/1"631’ Aq4 = As5 = S~ & T &3

24110\ 2
A” 28*/ + 8*/
T 11 33

an )

)

1 y 2 /m
axn = —EA:CIIU Q46 = dse :;(—— 1)

)

3
A, 1
!/ */
(123:2 — Cy ay7 = ds; = — <&
- 11 2 33

1 An ? */ 1 A” ? */ */
Ay = —dys = E 7 €31, Qe = 5 ? & T é33

and the vector B, is defined by

b

Bﬂ = [07 b2’ b37 b47 b57 b67 0]T7 (B2)
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with the components given by

1
by =58, += Aﬁ W,

o--4(2)s
(+

V
by=0b —l ) &y
4 = 05 = 6 11 ns

o ()

(b) For the parallel configuration
an 0 0 0 0 0

an ars  dy4 dps Ay

A, = aszy a4 ass  dse
(sym.) ay 0 ag |’

ass  dse

[

where the components of the matrix A, are defined by

2 vl
ay = —AnCll,

1 *
ay = 12A4C11,

A\
6123—2( )Crl,
A2
ay = dys = _E(Tn> e

w=2(3) G-

[
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and the vector B, is defined as follows:
T
B,=[0, by, bsy, by bs, bs|, (B.4)

with the components given by

~ 1 —~
b, =S, +§A5e;’l v,

2\’r/n » a1
b= (2) 13- -]
b4:b5:%(%>28’['1/\,,,

404\ (1/n\2 = =
b=t (A (LEY -2 )
¢ n(n)(6 2) T2t >3“
In the above definition we have set A, = k4, = nn(h/L) placing the inverse of the slenderness ratio % in
evidence. It is worthwhile noting that some components of the matrices (B.1) and (B.3) are the same or

opposite. In addition, we have introduced the dimensionless electromechanical variables and material
constants defined as follows

h(p(;zz (p3,n 971 Sn Vn

PO ~ ~ o~ o~ u w,
UI‘H VVIHFIH ¢<Z>7 ¢ ny @l'nSn? V"l) - - b - 7Fn7 ) b ) b)
( 2n =3, h ' h Ey Ey " h’ Cy hE,

* D ¥
( */ e*/ 8*/) _ C&Xﬁ E()@:-; E()Sfj
b in? “ij - bl b
A COO COO COO
where the constant Cy, is an elastic modulus of reference, for numerical investigations we take Cj; and E,
has been given in Section 6.
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